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Abstract
A model-free controller for a general class of output feedback nonlinear discrete-time systems is established by action-

critic networks and reinforcement learning with human knowledge based on IF–THEN rules. The action network is

designed by a single input fuzzy-rules emulated network with the set of IF–THEN rules utilized by the relation between

control effort and plant’s output such as IF the output is high THEN the control effort should be reduced. The critic

network is constructed by a multi-input FREN (MiFREN) for estimating an unknown long-term cost function. The set of

IF–THEN rules for MiFREN is defined by the general knowledge of optimization such that IF the quadratic values of

control effort and tracking error are high THEN the cost function should be high. The convergence of tracking error and

bounded external signals can be guaranteed by Lyapunov direct method under general assumptions which are reasonable

for practical plants. A computer simulation system is firstly provided to demonstrate the design method and the perfor-

mance of the proposed controller. Furthermore, an experimental system with the prototype of DC-motor current control is

conducted to show the effectiveness of the control scheme.

Keywords Model-free adaptive control � Reinforcement learning � Nonlinear discrete-time systems � Fuzzy neural

network � DC-motor current control

1 Introduction

Mathematical models of practical plants, in general, are

hardly determined with appropriate accuracy. To design the

controller without a mathematical model of a controlled

plant in discrete-time domain, the model-free adaptive

control schemes have been proposed by using only the set

of input–output data [1–3]. In general, the full-state feed-

back has been required to gain enough information such

that the works of [4] for the linear plant and [5, 6] for

nonlinear systems. On the other hand, the output feedback

control schemes have been less studied than the state

feedback schemes because output feedback controllers

have been much more difficult in many cases [7, 8]. In

order to handle the applications with unknown nonlinear

discrete-time systems and lacking state measurement,

model-free adaptive controllers based on output feedback

have been developed with the closed-loop stability guar-

antee [9–12]. Nevertheless, the stability analysis is only a

bare minimum requirement for controller designs, but the

optimization of a prescribed cost function is preferred for

several control applications [13–15].

The optimal control schemes based on the concept of

action-critic networks have been proposed to determine the

estimated solution of the Hamilton–Jacobi–Bellman (HJB)

equation [16] within the manner of reinforcement learning

(RL) algorithms [17, 18]. In general, both action and critic

networks have been established by artificial neural net-

works (ANN) when the unknown cost function has been

approximated by a critic-ANN and the solution of control

effort has been obtained by an action-ANN [19, 20]. The

architectures and learning schemes of action-critic net-

works have been proposed such that ‘‘neuro dynamic

programming’’ [21], ‘‘adaptive critic design’’ [22] and

‘‘adaptive dynamic programming’’ for discrete-time sys-

tems [23] and continuous-time systems [24]. In [25], the

controlled plant has been considered as a gray-box system
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and the action-critic structure has been proposed to design

the adaptive controller with nearly optimization manner

based on RL algorithm. Consideration of approximation

errors, the generalized policy iteration has been developed

in [26]. Both value and policy iterations play an importance

role for solving optimal control problems, but both itera-

tions seem inconvenient for implementation with practical

plants. That motivates us to design the learning algorithm

for both critic and action networks without inner iteration.

Currently, they have a few works for the implementation

of practical systems with action-critic networks and RL

learning because the standard algorithms cannot be directly

applied for time-varying conditions and uncertainties

which are common for application plants [27]. Further-

more, the measurement of full-state variables is generally

required to design controllers and learning algorithms

[28, 29]. Together with the economic reason, output

feedback control schemes are strongly desired for a large

class of practical plants. Recently, the output feedback

controllers based on RL algorithms have been proposed

with the condition of persistent excitation (PE) [30]. The

PE condition is generally required to be satisfied for

adaptive algorithms with stability analysis. In [31], the PE

condition can be relaxed with the ANN control scheme for

nearly optimal regulation scheme, but the controller is

limited for a class of affine nonlinear discrete-time systems.

For a class of non-affine systems, the Q-learning algorithm

based on critic-action networks has been proposed in

[32–34], but it has been emphasized on state-feedback

scheme and regulation problem. For practical perspective,

the output feedback controller will be developed by the

action-critic structure and the online learning algorithm

only.

Fuzzy systems have been successfully utilized for the

presence of robustness and uncertainties of optimal con-

trollers when mathematical models of controlled plants

have been considered as unknown [35]. In [36], fuzzy

hyperbolic model has been developed as an action network

tuned by the internal reinforcement signal for a class of

unknown discrete-time systems, but only the regulation

problem has been discussed. Based on the back-stepping

adaptive control, the uncertainties and unknown systems

have been handled [37, 38], but the full-state feedback has

been required to design controllers. The design of output

feedback controller based on fuzzy systems has been pro-

posed by [39], but this controller has been conducted by a

class of continuous-time systems with unity control gain.

Recently, the controller based on a recurrent-fuzzy neural

network with RL has been proposed by [40] for a class of

nonlinear discrete-time systems, but only the tracking error

has been selected for the reward function of the critic

network.

In this article, the controlled plant is considered as a

class of non-affine discrete-time systems when the mathe-

matical model is unknown. To design the controller with-

out any model, the model-free adaptive control scheme is

established by an action-critic networks architecture with

RL algorithm. The control signal is generated via an action

network constructed by a single input fuzzy-rules emulated

network (FREN) [41]. The set of IF–THEN rules for FREN

is created by the human knowledge according to the rela-

tion between the control signal and the plant’s output [42]

such that

Action IF Higher output is desired, THEN Larger

control signal is requested.

Within the manner of optimization between the tracking

error and the energy of control signal, a critic network is

established to estimate the long-term cost function. A

multi-input fuzzy-rules emulated network (MiFREN) is

implemented to create a critic network with the set of IF–

THEN rules as

Critic IF Error is big and Control energy is large, THEN

Reward should be low.

This reward can lead to the cost function generated by

MiFREN with the relation such that the lower cost function

can be obtained when the tracking error and the control

energy are tiny. The main contributions of this article are

shortly listed as the followings:

• Unlike other works such that [17, 25, 29, 30, 34],

action-critic schemes have been designed by ANNs

with random weight parameters; in this work, both

action and critic networks are designed by IF–THEN

rules utilized by human knowledge of the controlled

plant and the controller’s actuator that allows the

engineer to design the structure and adjustable param-

eters in the sense of engineering not in the random

aspect.

• The online learning algorithm is developed without

inner policy and value iterations while the convergence

of tracking error and internal signals can be guaranteed.

Unlike a case of event-trigger and sampling time

systems such that [23, 27, 33, 43], the proposed

controller can be utilized for more extensive discrete-

time systems.

• The tracking controller is designed without the trans-

formation of the original systems to be the augmented

system dynamic that allows the proposed controller be

able to be implemented directly for a large class of

practical plants such as the prototype of DC-motor

current control in this work.

The rest of this article is organized as follows. A class on

nonlinear discrete-time systems and problem formulation is

mentioned in Sect. 2. Section 3 introduces the design of

action and critic networks with the concept of IF–THEN
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rules related on the controlled plant’s characteristic. The

learning algorithm is developed in Sect. 4 with conver-

gence analysis for tracking error and internal signals. The

computer simulation system is firstly utilized to demon-

strate the design procedure and the performance of the

proposed controller with a selected nonlinear plant in

Sect. 5.1. Secondly, in Sect. 5.2, the experimental system

with a DC-motor current control is constructed to demon-

strate the effectiveness and the online learning ability

against the nonlinearity and uncertainty terms of practical

systems. Section 6 draws the conclusions.

2 Problem statement: a class of nonlinear
discrete-time systems

The block diagram in Fig. 1 presents our prototyping DC-

motor current control system which has input terminal as

control effort uðkÞ 2 R and output terminal as measured

current yðk þ 1Þ 2 R when k denotes as kth sampling time

index. The control signal u(k) is a driving voltage gener-

ated by a data-acquisition card (CONTEC� AIO-160802L-

LPE). The motor current yðk þ 1Þ is measured by the

instrument circuit connected with analog input of AIO-

160802L-LPE. This plant is considered as an unknown

nonlinear system with input u(k) and output yðk þ 1Þ. The

mathematical model of this system will not be required to

design our controller and stability analysis. The nonlinear

behavior of this DC-motor driving system can be demon-

strated in Fig. 2 as a V–I curve when input voltage and

motor current are denoted as control effort u(k) and current

output yðk þ 1Þ, respectively. Without any information

about system’s mathematical model, this controlled plant

can be considered as a class of non-affine discrete-time

system and the system dynamic can be formulated as

yðk þ 1Þ ¼ foðuðkÞ; . . .; uðk � luÞ; yðkÞ; . . .; yðk � lyÞÞ þ dðkÞ;
ð1Þ

when foð�Þ is an unknown nonlinear function, lu and ly are

unknown system orders and d(k) is a bounded disturbance

as jdðkÞj � doM . Let us define viðkÞ ¼ ½uðk � 1Þ . . .
uðk � luÞ yðkÞ . . . yðk � lyÞ�T , thus the system dynamic (1)

can be rewritten as

yðk þ 1Þ ¼ foðuðkÞ; viðkÞÞ þ dðkÞ: ð2Þ

Without loss of generality, the following assumptions are

stated for the nonlinear function foð�Þ.

Assumption 1 The nonlinear function foð�Þ is continuous

with respect to the first argument u(k) or
ofoðuðkÞ;viðkÞÞ

ouðkÞ is

existed.

Assumption 2 Two constants gm and gM are existed where

0\gm �
�
�
�
ofoðuðkÞ; viðkÞÞ

ouðkÞ

�
�
�� gM: ð3Þ

Those assumptions are standard requirements for several

nonlinear discrete-time control schemes. In this work, the

Fig. 1 DC-motor current control

configuration
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proposed control scheme will be designed under the con-

ditions that the nonlinear function foð�Þ and the boundaries

in (3) are completely unknown. The boundaries in (3) can

be estimated by V–I curve or experimental data. For

example, in this application the estimated value of (3) can

be obtained by the estimated tangent of the curve in Fig. 2

as

gM ¼ 20 � 0

1:5 � 0:5
¼ 20: ð4Þ

The proposed control scheme will be developed to handle

the tracking problem for a class of system in (1) by

adaptive networks and stability analysis in the next section.

3 Action and critic architecture based
on FRENs

In this work, the control scheme is proposed by the concept

of action and critic networks presented by Fig. 3 when an

action network is established by FRENaction or FRENa

and a critic network is created by MiFRENcritic or

MiFRENc. The action network or FRENa is designed to

generate the control effort for the controlled plant, and

parameters inside this network are tuned to minimize the

estimated cost function obtained by the critic network or

MiFRENc. The reword function for MiFRENc is estab-

lished by IF–THEN rules according to the relation of

tracking error and control effort. Two sets of IF–THEN

rules and network architectures will be introduced for both

FRENa and MiFRENc in the followings subsections.

3.1 Action network: FRENa

According to the human knowledge related on the con-

trolled plant, the IF–THEN rules can be defined as

‘‘IFeðkÞ is Positive Large THEN uðkÞ is Negative Large’’;

when e(k) denotes as the tracking error given by

eðkÞ ¼ yðkÞ � rðkÞ; ð5Þ

where r(k) is the desired trajectory. That means the error

determined by (5) is large in positive thus the output

y(k) should be reduced by the large in negative of control effort

u(k). In this work, the set of IF–THEN rules can be defined as

IF eðkÞ is NL THEN u1ðkÞ ¼ bPLðkÞlNLðekÞ;
IF eðkÞ is NM THEN u2ðkÞ ¼ bPMðkÞlNMðekÞ;
IF eðkÞ is NS THEN u3ðkÞ ¼ bPSðkÞlNSðekÞ;
IF eðkÞ is Z THEN u4ðkÞ ¼ bZðkÞlZðekÞ;
IF eðkÞ is PS THEN u5ðkÞ ¼ bNSðkÞlPSðekÞ;
IF eðkÞ is PM THEN u6ðkÞ ¼ bNMðkÞlPMðekÞ;
IF eðkÞ is PL THEN u7ðkÞ ¼ bNLðkÞlPLðekÞ;

The notations of linguistic variables N, P, L, M, S and Z

denote as negative, positive, large, medium, small and

zero, respectively. The nonlinear function lhðekÞ is a

membership function and bhðkÞ is an adjustable parameter

for linguistic value h, where h denotes as linguistic values

such that Negative Large (NL), Negative Medium(NM),...,

Zero(Z), ..., Positive Large(PL) for all using membership

functions. Regarding to the relation of FREN’s computa-

tion [41], the control effort can be obtained by

uðkÞ ¼
X7

i¼1

uiðkÞ: ð6Þ

To simplify, the control effort can be rewritten as
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Fig. 2 V–I characteristic of DC-motor driver system

Fig. 3 FREN: action and critic networks architecture
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uðkÞ ¼ bTa ðkÞ/aðkÞ; ð7Þ

when

baðkÞ ¼ ½bPLðkÞ bPMðkÞ � � � bNLðkÞ�T ; ð8Þ

and

/aðkÞ ¼ ½lNLðekÞ lNMðekÞ � � � lPLðekÞ�T : ð9Þ

The network architecture of FRENa is depicted in Fig. 4.

According to the universal function approximation of

FREN [41], it exists the ideal parameter b�a that leads to

u�ðkÞ ¼ b�Ta /aðkÞ þ eaðkÞ; ð10Þ

when eaðkÞ is the approximation error of FRENa. By using

(2), the error dynamic can be obtained as

eðk þ 1Þ ¼ foðuðkÞ; viðkÞÞ þ dðkÞ � rðk þ 1Þ: ð11Þ

Adding and subtracting foðu�ðkÞ; viðkÞÞ into (11), thus, the

error dynamic can be rewritten as

eðk þ 1Þ ¼ foðuðkÞ; viðkÞÞ � foðu�ðkÞ; viðkÞÞ þ dðkÞ:
ð12Þ

By using mean value theorem and Assumption 1, the error

dynamic (12) can be obtained as

eðk þ 1Þ ¼ gðuiðkÞ; viðkÞÞ½uðkÞ � u�ðkÞ� þ dðkÞ; ð13Þ

where

gðuiðkÞ; viðkÞÞ ¼
ofoðuiðkÞ; viðkÞÞ

ouiðkÞ ; ð14Þ

when uiðkÞ 2 ½minfu�k ; ukg; maxfu�k ; ukg�. Substituting

u�ðkÞ with (10) and u(k) with (7) and defining

gðuiðkÞ; viðkÞÞ ¼ gðkÞ, this, the error dynamic (13) can be

rewritten as

eðk þ 1Þ ¼ gðkÞ½baðkÞ � b�a�
T/aðkÞ � gðkÞeaðkÞ þ dðkÞ:

ð15Þ

Let us define ~baðkÞ ¼ baðkÞ � b�a, daðkÞ ¼ dðkÞ �

gðkÞeaðkÞ and KaðkÞ ¼ ~bTa ðkÞ/aðkÞ, thus, we obtain

eðk þ 1Þ ¼ gðkÞKaðkÞ þ daðkÞ: ð16Þ

The error dynamic obtained in (16) indicates the relation

with the difference of ideal and adjustable parameters of

action network FRENa and its approximation error.

3.2 Critic network: MiFRENc

In order to minimize for both tracking error and control

energy, an infinite-horizon cost function is defined as

LðkÞ ¼
X1

i¼k

ci�k
L ½pe2ðiÞ þ qu2ðiÞ�; ð17Þ

when p and q are positive constants and 0\cL � 1 as a

discount factor. Let us rearrange (17) as

LðkÞ ¼ pe2ðkÞ þ qu2ðkÞ

þ cL
X1

i¼kþ1

ci�ðkþ1Þ
L ½pe2ðiÞ þ qu2ðiÞ�;

¼ lðkÞ þ cLLðk þ 1Þ;

ð18Þ

when l(k) is the local cost function defined by

lðkÞ ¼ pe2ðkÞ þ qu2ðkÞ: ð19Þ

Let us define nk ¼ ½e2ðkÞ : u2ðkÞ� as the current states

including the tracking error and the control effort, thus we

have

LðkÞ ¼ lðnkÞ þ cLLðk þ 1Þ: ð20Þ

For the closed-loop system with output feedback, it is clear

that the next time index of tracking error is the function of

current control effort and the current control effort is the

function of current tracking error that leads to

nkþ1 ¼ ½e2ðk þ 1Þ : u2ðk þ 1Þ� ¼ fnðnkÞ; ð21Þ

when fnð�Þ is an unknown analytic function. According to

composition of functions, we have

nkþ2 ¼ fn � fnðnkÞ,fnðnkÞ: ð22Þ

Combination (20–22) and all future steps, it leads us to

LðkÞ ¼ lðnkÞ þ cLlðFnðnkÞÞ; ð23Þ

where FnðnkÞ ¼ f
j
nðnkÞ for j ¼ 1 ! 1. Regarding (23), the

cost function in (17) can be estimated by MiFRENc as

L̂ðkÞ. This network has two inputs e2ðkÞ and u2ðkÞ and one

output L̂ðkÞ as Fig. 5. The relation between inputs and

estimated cost function can be established by the set of IF–

THEN rules such that

Fig. 4 FRENa network architecture
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‘‘IF e2ðkÞ is Large and u2ðkÞ is Large THEN L̂ðkÞ
should be Large value.’’

ð24Þ

This is a strange forward IF–THEN rule to indicate that the

good reward can be obtained when the control system has

less tracking error with lower control effort. Thus, the set

of IF–THEN rules can be defined as

IF e2ðkÞ is L and u2ðkÞ is L THEN L̂1ðkÞ ¼ bL1ðkÞ/1ðkÞ;
IF e2ðkÞ is L and u2ðkÞ is S THEN L̂2ðkÞ ¼ bL2ðkÞ/2ðkÞ;
IF e2ðkÞ is L and u2ðkÞ is Z THEN L̂3ðkÞ ¼ bL3ðkÞ/3ðkÞ;
IF e2ðkÞ is L and u2ðkÞ is L THEN L̂4ðkÞ ¼ bS1ðkÞ/4ðkÞ;
IF e2ðkÞ is L and u2ðkÞ is S THEN L̂5ðkÞ ¼ bS2ðkÞ/5ðkÞ;
IF e2ðkÞ is L and u2ðkÞ is Z THEN L̂6ðkÞ ¼ bS3ðkÞ/6ðkÞ;
IF e2ðkÞ is L and u2ðkÞ is L THEN L̂7ðkÞ ¼ bZ1ðkÞ/7ðkÞ;
IF e2ðkÞ is L and u2ðkÞ is S THEN L̂8ðkÞ ¼ bZ2ðkÞ/8ðkÞ;
IF e2ðkÞ is L and u2ðkÞ is Z THEN L̂9ðkÞ ¼ bZ3ðkÞ/9ðkÞ;

when /1ðkÞ ¼ lLðe2
kÞlLðu2

kÞ, /2ðkÞ ¼ lLðe2
kÞlSðu2

kÞ and so

on. The estimated cost function can be obtained as

L̂ðkÞ ¼
X9

i¼1

L̂1ðkÞ: ð25Þ

To simplify, the relation in (25) can be rewritten as

L̂ðkÞ ¼ bTc ðkÞ/cðkÞ; ð26Þ

when

bcðkÞ ¼ ½bL1ðkÞ bL1ðkÞ � � � bZ3ðkÞ�
T ; ð27Þ

and

/cðkÞ ¼ ½/1ðkÞ /2ðkÞ � � � /9ðkÞ�T : ð28Þ

The network architecture of MiFRENc is depicted in

Fig. 5. Regarding the universal function approximation of

MiFREN, it exists b�c such that

LðkÞ ¼ b�Tc /cðkÞ þ ecðkÞ; ð29Þ

when ecðkÞ is the approximation error of MiFRENc. By

adding and subtracting b�Tc /cðkÞ on the left hand side of

(26), thus we obtain

L̂ðkÞ ¼ ~bTc ðkÞ/cðkÞ þ b�Tc /cðkÞ; ð30Þ

when ~bcðkÞ ¼ bTc ðkÞ � b�c . Let us define KcðkÞ ¼
~bTc ðkÞ/cðkÞ, thus, the estimated cost function (30) can be

rewritten as

L̂ðkÞ ¼ KcðkÞ þ b�Tc /cðkÞ: ð31Þ

It us clear that the accuracy of estimated cost function

relates on the learning algorithm of weight parameters b.

The proposed learning algorithms will be developed in the

next section to tune all adjustable parameters inside FRENa

and MiFRENc with convergence analysis.

Fig. 5 MiFRENc network

architecture
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4 Learning algorithms and performance
analysis

The learning algorithms are developed for both FRENa and

MiFRENc. To improve the computation complexity

according to the practical systems point of view, in this

work, only the parameters bðkÞ have been tuned by the

proposed learning laws. The performance analysis beside

of the tracking error and external signals is established by

Lyapunov direct method.

4.1 Learning algorithm for FRENa

In this subsection, the learning algorithm is developed for

adjustable parameters of FRENa. To avoid the causality

problem of eðk þ 1Þ in (16), the error function of FRENa is

given by KaðkÞ and the estimated function L̂ðkÞ as

eaðkÞ ¼
ffiffiffiffiffiffiffiffiffi

gðkÞ
p

KaðkÞ þ
1
ffiffiffiffiffiffiffiffiffi

gðkÞ
p L̂ðkÞ: ð32Þ

The cost function of FRENs is given as

EaðkÞ ¼
1

2
e2
aðkÞ: ð33Þ

Based on the gradient reach, the tuning law for ba is

established as

baðk þ 1Þ ¼ baðkÞ � ga
oEaðkÞ
obaðkÞ

; ð34Þ

when ga denotes as the selected learning rate which will be

given next by the main theorem. By using the chain rule,

the partial derivative term can be determined as

oEaðkÞ
obaðkÞ

¼ oEaðkÞ
oeaðkÞ

oeaðkÞ
oKaðkÞ

oKaðkÞ
obaðkÞ

;

¼ eaðkÞ
ffiffiffiffiffiffiffiffiffi

gðkÞ
p

/aðkÞ:
ð35Þ

Substituting (35) into (34) and using eaðkÞ in (32), we

obtain

baðk þ 1Þ ¼ baðkÞ � ga½
ffiffiffiffiffiffiffiffiffi

gðkÞ
p

KaðkÞ

þ 1
ffiffiffiffiffiffiffiffiffi

gðkÞ
p L̂ðkÞ�

ffiffiffiffiffiffiffiffiffi

gðkÞ
p

/aðkÞ;

¼ baðkÞ � ga½gðkÞKaðkÞ þ L̂ðkÞ�/aðkÞ:

ð36Þ

Let us recall the error dynamic (16) and consider to neglect

the disturbance or daðkÞ ¼ 0, thus, we obtain

gðkÞKaðkÞ ¼ eðk þ 1Þ: ð37Þ

Substituting (37) into (36), the learning law of ba can be

rewritten as

baðk þ 1Þ ¼ baðkÞ � ga½eðk þ 1Þ þ L̂ðkÞ�/aðkÞ: ð38Þ

The unknown nonlinear function g(k) is completely dis-

appeared in the learning law (38), that allows this algo-

rithm is capable for online learning phase of FRENa with

unknown plant’s dynamic equations.

4.2 Learning algorithm for MiFRENc

The learning algorithm to tune parameters inside

MiFRENc is developed in this subsection. Let us define the

error function of MiFRENc as

ecðkÞ ¼ dL̂ðkÞ � L̂ðk � 1Þ þ lðkÞ; ð39Þ

when d is a positive constant which will be discussed next

for the performance analysis. The cost function to be

minimized for tuning bc is given as

EcðkÞ ¼
1

2
e2
cðkÞ: ð40Þ

The learning dynamic of ba is obtained as

bcðk þ 1Þ ¼ bcðkÞ � gc
oEcðkÞ
obcðkÞ

; ð41Þ

when gc denotes as the selected learning rate. By using the

chain rule with EcðkÞ in (40), ecðkÞ in (39) and L̂ðkÞ in (31),

the partial derivative term can be obtained as

oEcðkÞ
obcðkÞ

¼ oEcðkÞ
oecðkÞ

oecðkÞ
oL̂ðkÞ

oL̂ðkÞ
obcðkÞ

;

¼ ecðkÞd/cðkÞ:
ð42Þ

The learning dynamic (41) can be obtained as

bcðk þ 1Þ ¼ bcðkÞ � gcecðkÞd/cðkÞ: ð43Þ

Recalling ecðkÞ in (39) with (43), thus, the learning algo-

rithm for MiFRENc can be rewritten as

bcðk þ 1Þ ¼ bcðkÞ � gcd½lðkÞ � L̂ðk � 1Þ þ dL̂ðkÞ�/cðkÞ:
ð44Þ

This is a practical tuning law which will be used to adjust

the parameter bc as online learning phase.

4.3 Performance analysis

The main theorem is proposed to demonstrate the setting of

controller’s parameters and learning rates to ensure the

closed-loop performance when the tracking error and

internal signals are bounded within defined compact sets.

Theorem 4.1 Consider the nonlinear discrete-time system

described by (1) and let Assumptions 1 and 2 be held. Let

dM , gM , ecM , baM and LMbe existed. Under the control law

in (7) and learning algorithms in (38) and (44), it guar-

antees that the functions KaðkÞ and KcðkÞ and the tracking
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error e(k) are bounded when designed parameters are

appropriately chosen as the followings:

1

2
\d� 1; ð45Þ

0\ga �
gm

N2
ag

2
M

; ð46Þ

and

0\gc �
1

d2N2
c

; ð47Þ

where Na and Nc are number of IF–THEN rules of FRENa

and MiFRENc, respectively. The boundaries of e(k), KaðkÞ
and KcðkÞ are obtained as Xe, Xa and Xc when

Xe ¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NM
q1

3
� q3

4
p

s

: ð48Þ

Xa ¼
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NM

q2gm � q1g
2
M � q3

8
q

s

; ð49Þ

and

Xc ¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NM

q3d
2 � q4

s

; ð50Þ

where

NM ¼: q1d
2
m þ q3e

2
cM þ q3

8
b2
aM þ

h q3

8
ðc� 1Þ2 þ q2

go

i

L2
M :

ð51Þ

All constants q1, q2, . . ., q4 are given as

q1 [
3

4
pq3; ð52Þ

q2 [
q1g

2
M þ q3

8
q

gm
q3; ð53Þ

q3 [
q4

d2
; ð54Þ

and

q4 [
q3

4
: ð55Þ

Remark In this work, the number of IF–THEN rules is

given as 7 and 9 rules for FRENa and MiFRENc, respec-

tively. The design of the number of IF–THEN rules is

conducted by the computation complexity, and the results

of simulation and experimental systems will be discussed

by the next section.

Proof By using the Lyapunov direct method, in this work,

the candidate function is given as

VðkÞ ¼ q1e
2ðkÞ þ q2

ga
~bTa ðkÞ~baðkÞ

þ q3

gc
~bTc ðkÞ~bcðkÞ þ q4K

2
cðk � 1Þ;

ð56Þ

or

VðkÞ ¼ V1ðkÞ þ V2ðkÞ þ V3ðkÞ þ V4ðkÞ; ð57Þ

when

V1 ¼ q1e
2ðkÞ; ð58Þ

V2 ¼ q2

ga
~bTa ðkÞ~baðkÞ; ð59Þ

V3 ¼ q3

gc
~bTc ðkÞ~bcðkÞ; ð60Þ

and

V4 ¼ q4K
2
cðk � 1Þ: ð61Þ

According to the error dynamic in (16), the change of

Lyapunov candidate function V1ðkÞ can be obtained by

DV1ðkÞ ¼ q1

�

e2ðk þ 1Þ � e2ðkÞ
�

;

¼ q1

�

½gðkÞKaðkÞ þ daðkÞ�2 � e2ðkÞ
�

;

� q1

�

2g2ðkÞK2
aðkÞ þ 2d2

aðkÞ � e2ðkÞ
�

:

ð62Þ

Applying Assumption 2 and the upper bound of the dis-

turbance and the estimation error as dm when jdaðkÞj � dM:

8k ¼ 1; 2; . . ., the relation in (62) can be rewritten as

DV1ðkÞ� � q1e
2ðkÞ þ 2q1g

2
MK

2
aðkÞ þ 2q1d

2
M: ð63Þ

By using the tuning law in (36), the change of V2ðkÞ can be

expressed as

DV2ðkÞ ¼
q2

ga

h

~bTa ðk þ 1Þ~baðk þ 1Þ � ~bTa ðkÞ~baðkÞ
i

;

¼ q2

ga

h�
~baðkÞ � ga½gðkÞKaðkÞ

þ L̂ðkÞ�/aðkÞ
�T�~baðkÞ � ga½gðkÞKaðkÞ

þ L̂ðkÞ�/ðkÞ
�

� ~bTa ðkÞ~baðkÞ
i

;

¼� 2q2½gðkÞKaðkÞ þ L̂ðkÞ�~bTa ðkÞ/ðkÞ
þ q2ga½gðkÞKaðkÞ
þ L̂ðkÞ�2/T

a ðkÞ/ðkÞ;
¼� 2q2KaðkÞ½gðkÞKaðkÞ� � 2q2KaðkÞL̂ðkÞ
þ q2gajj/aðkÞjj2½gðkÞKaðkÞ þ L̂ðkÞ�2:

ð64Þ

With the lower bound and upper bound of g(k) in (3), the

change of V2ðkÞ (64) can be rewritten as
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DV2ðkÞ� � 2q2gmK
2
aðkÞ � 2q2KaðkÞL̂ðkÞ

þ q2gajj/aðkÞjj2g2
MK

2
aðkÞ

þ q2gajj/aðkÞjj2½L̂2ðkÞ þ 2gðkÞKaðkÞL̂ðkÞ�;

¼ q2

h

� gmK
2
aðkÞ � ðgm � gajj/aðkÞjj2g2

MÞK2
aðkÞ

� 2KaðkÞ½I � gajj/aðkÞjj2gðkÞ�L̂ðkÞ

þ gajj/aðkÞjj2L̂2ðkÞ
i

;

¼ q2

h

� gmK
2
aðkÞ � ðgm � gajj/aðkÞjj2g2

MÞ
h

K2
aðkÞ

þ 2KaðkÞ½I � gajj/aðkÞjj2gðkÞ�L̂ðkÞ
gm � gajj/aðkÞjj2g2

M

i

þ gajj/aðkÞjj2L̂2ðkÞ
i

;

¼ q2

h

� gmK
2
aðkÞ � ðgm � gajj/aðkÞjj2g2

MÞ

�
�
�
�

�
�
�KaðkÞ þ

½1 � gajj/aðkÞjj2gðkÞ�L̂ðkÞ
gm � gajj/aðkÞjj2g2

M

�
�
�

�
�
�

2

þ ½1 � gajj/aðkÞjj2gðkÞ�2L̂2ðkÞ
gm � gajj/aðkÞjj2g2

M

þ gajj/aðkÞjj2L̂2ðkÞ
i

;

¼ � q2gmK
2
aðkÞ � q2ðgm � gajj/aðkÞjj2g2

MÞ

�
�
�
�

�
�
�KaðkÞ þ

½1 � gajj/aðkÞjj2gðkÞ�L̂ðkÞ
gm � gajj/aðkÞjj2g2

M

�
�
�

�
�
�

2

þ q2

1 � gajj/aðkÞjj2gm
gm � gajj/aðkÞjj2g2

M

L̂2ðkÞ:

ð65Þ

It can be simplified as

DV2ðkÞ� � q2gmK
2
aðkÞ þ

q2

gm
L̂2ðkÞ � q2ðgm

� gajj/aðkÞjj
2
g2
MÞ

�
�
�

�
�
�KaðkÞ

þ ½1 � gajj/aðkÞjj2gðkÞ�L̂ðkÞ
gm � gajj/aðkÞjj2g2

M

�
�
�

�
�
�

2

:

ð66Þ

Referring the learning law of bc in (43), the change of

V3ðkÞ can be expressed as

DV3ðkÞ ¼
q3

gc

h

~bTc ðk þ 1Þ~bcðk þ 1Þ � ~bTc ðkÞ~bcðkÞ
i

;

¼ q3

gc

h

½~bcðkÞ � gcdecðkÞ/cðkÞ�T ½~bcðkÞ

� gcdecðkÞ/cðkÞ� � ~bTc ðkÞ~bcðkÞ
i

;

¼ q3

gc

h

� 2gcdecðkÞ~bTc ðkÞ/cðkÞ

þ g2
cd

2e2
cðkÞjj/cðkÞjj2

i

;

¼� 2q3dKcðkÞecðkÞ
þ q3gcd

2jj/cðkÞjj2e2
cðkÞ:

ð67Þ

By adding and subtracting dLðkÞ and Lðk � 1Þ on the left

hand side of the error function (39) for MiFRENc, we

obtain

ecðkÞ ¼ d½L̂ðkÞ � LðkÞ� þ dLðkÞ � ½L̂ðk � 1Þ
� Lðk � 1Þ� � Lðk � 1Þ þ lðkÞ;

¼ d½b̂Tc ðkÞ/cðkÞ � bTc/cðkÞ � ecðkÞ� þ dLðkÞ
� Lðk � 1Þ þ lðkÞ � ½b̂Tc ðk � 1ÞFcðk � 1Þ
� bTc/cðk � 1Þ � ecðk � 1Þ�;

¼ d½b̂Tc ðkÞ � bTc �/cðkÞ � ½b̂Tc ðk � 1Þ
� bTc �/cðk � 1Þ þ dLðkÞ � Lðk � 1Þ þ lðkÞ
� decðkÞ þ ecðk � 1Þ;

¼ d~bTc ðkÞ/cðkÞ � ~bTc ðk � 1Þ/cðk � 1Þ þ dLðkÞ
� Lðk � 1Þ þ lðkÞ � decðkÞ þ ecðk � 1Þ:

ð68Þ

Regarding to the definition of KcðkÞ, the relation in (68)

can be rewritten as

ecðkÞ ¼ dKcðkÞ � Kcðk � 1Þ þ dLðkÞ � Lðk � 1Þ
þ lðkÞ � decðkÞ þ ecðk � 1Þ:

ð69Þ

Let us rearrange (69), thus, we obtain

dKcðkÞ ¼ ecðkÞ � dLðkÞ þ Kcðk � 1Þ þ Lðk � 1Þ
� lðkÞ þ decðkÞ � ecðk � 1Þ:

ð70Þ

Substitute (70) into (67), thus, we have

DV3ðkÞ ¼ � 2q3ecðkÞ
h

ecðkÞ � dLðkÞ þ Kcðk � 1Þ

þ Lðk � 1Þ � lðkÞ þ decðkÞ � ecðk � 1Þ
i

þ q3gcd
2jj/cðkÞjj

2
e2
cðkÞ;

¼� q3

h

1 � gcd
2jj/cðkÞjj2

i

e2
cðkÞ � q3e

2
cðkÞ

þ 2q3ecðkÞ
h

dLðkÞ � Kcðk � 1Þ � Lðk � 1Þ

þ lðkÞ � decðkÞ þ ecðk � 1Þ
i

;

¼� q3

h

1 � gcd
2jj/cðkÞjj2

i

e2
cðkÞ

� q3d
2K2

cðkÞ þ q3

h

dLðkÞ � Kcðk � 1Þ

� Lðk � 1Þ þ lðkÞ � decðkÞ þ ecðk � 1Þ
i2

;

� � q3

h

1 � gcd
2jj/cðkÞjj2

i

e2
cðkÞ

� q3d
2K2

cðkÞ þ
q3

4
K2

cðk � 1Þ

þ q3

4
l2ðkÞ þ q3

4
½dLðkÞ � Lðk � 1Þ�2

þ q3

4

h

decðkÞ � ecðk � 1Þ
i2

:

ð71Þ

Let us define the designed parameter d as 0\d� 1 and
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recall the local cost function l(k) in (19), thus, the relation

in (71) can be obtained as

DV3ðkÞ� � q3

h

1 � gcd
2jjFcðkÞjj2

i

e2
cðkÞ � q3d

2K2
cðkÞ

þ q3

4
K2

cðk � 1Þ þ q3

4
pe2ðkÞ

þ q3

8
qK2

aðkÞ þ
q3

8
jjbTa ðkÞ/aðkÞjj2

þ q3

4
½dLðkÞ � Lðk � 1Þ�2 þ q3e

2
cM ;

ð72Þ

where jecðkÞj� e2
cM . For V4ðkÞ, its first difference can be

obtained as

DV4ðkÞ ¼ q4

h

K2
cðkÞ � K2

cðk � 1Þ
i

: ð73Þ

Finally, the change of Lyapunov function V(k) is obtained

as

DVðkÞ� � q1

3
e2ðkÞ þ q1g

2
MK

2
aðkÞ þ q1d

2
M

� q2gmK
2
aðkÞ � q2ðgm � gajj/aðkÞjj

2
g2
MÞ

�
�
�
�

�
�
�KaðkÞ þ

½1 � gajj/aðkÞjj2gðkÞ�LðkÞ
gm � gajj/aðkÞjj2g2

M

�
�
�

�
�
�

2

þ q2

gm
L2ðkÞ � q3

h

1 � gcd
2jj/cðkÞjj2

i

e2
cðkÞ

� q3d
2K2

cðkÞ þ
q3

4
K2

cðk � 1Þ þ q3

4
pe2ðkÞ

þ q3

8
qK2

aðkÞ þ
q3

8
jjbTa/aðkÞjj2

þ q3

4
½dLðkÞ � Lðk � 1Þ�2 þ q3e

2
cM

þ q4

h

K2
cðkÞ � K2

cðk � 1Þ
i

;

� �
h q1

3
� q3

4
p
i

e2ðkÞ

�
h

q2gm � q1g
2
M � q3

8
q
i

K2
aðkÞ

�
h

q3d
2 � q4

i

K2
cðkÞ �

h

q4 �
q3

4

i

K2
cðk � 1Þ

� q2½gm � gajj/aðkÞjj
2
g2
M�
�
�
�

�
�
�KaðkÞ

þ ½1 � gajj/aðkÞjj2gðkÞ�LðkÞ
gm � gajj/aðkÞjj2g2

M

�
�
�

�
�
�

2

� q3

h

1 � gcd
2jj/cðkÞjj2

i

e2
cðkÞ þ NM:

ð74Þ

The membership functions of FRENa and MiFRENc are

given by (9) and (28), respectively. It is clear that /aðkÞ
and /cðkÞ are satisfied as the followings

0\/aðkÞ�Na; ð75Þ

and

0\/cðkÞ�Nc: ð76Þ

According to the designed parameters given by (45)–(47),

constants q1�4 satisfied conditions in (52)–(55) and the

relations in (75, 76), the change of Lyapunov function can

be negative semi-define or DVðkÞ� 0 when

jeðkÞj 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NM
q1

3
� q3

4
p

s

¼: Xe; ð77Þ

jKaðkÞj 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NM

q2gm � q1g
2
M � q3

8
q

s

¼: Xa; ð78Þ

and

jKcðkÞj 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NM

q3d
2 � q4

s

¼: Xc: ð79Þ

Thus, the existence of the compact sets (48), (79) can be

encouraged by (77)–(79), respectively. This proof is com-

pleted by the manner of Lyapunov direct method. h

The validation of the proposed control scheme will be

presented in the next section for the computer simulation

system with a non-affine discrete-time system and the

hardware implementation system for DC-motor current

control-plant.

5 Validation results

5.1 Simulation results

The following non-affine discrete-time system with output

feedback plant is used for simulation:

yðk þ 1Þ ¼ sinðykÞ þ ½5 þ cosðykukÞ�uk: ð80Þ

The desire trajectory is given as

rðk þ 1Þ ¼ Ar sin xrp
k

kM

� �

; ð81Þ

where kM ¼ 4000 as the maximum time index, Ar ¼
1:0; xr ¼ 16 when 0\k� kM

2
and Ar ¼ 2:0; xr ¼ 8 when

kM
2
\k� kM . The designed parameter d is selected as d ¼

0:75 to follow (45). The learning rate of MiFRENc is

designed by (47) as

0\gc �
1

d2N2
c

¼ 1

0:75292
¼ 0:0219: ð82Þ

Thus, we select the learning rate for MiFRENc as

gc ¼ 0:02. For designing the learning rate of FRENa, let us

chose the boundaries gm and gM as 1 and 2, respectively.
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According to (46), the learning rate of FRENa is designed

as

0\ga �
gm

N2
ag

2
M

¼ 1

7222
¼ 0:005: ð83Þ

Thus, the learning rate for FRENa is given in ga ¼ 0:0025.

The membership settings of FRENa and MiFRENc are

depicted in Figs. 6 and 7, respectively. The setting of

membership functions can be desired by the proper ranges

of e(k), e2ðkÞ and u2ðkÞ. In this application, the ranges are

given as ½� 5; 5�, [0, 10] and [0, 10] for e(k), e2ðkÞ and

u2ðkÞ, respectively. The initial setting of adjustable param-

eters bhð1Þ for FRENa and MiFRENc is given as Table 1.

The tracking performance is presented in Fig. 8 for both

the motor current y(k) and the tracking error e(k). The

maximum absolute value of tracking error is jeðkÞjmax ¼
2:4022 and the average absolute value of tracking error at

steady state is 0.0074 when k ¼ 3000�4000. Figure 9

displays the control effort u(k), and Fig. 10 illustrates the

estimated cost function L̂ðkÞ.

5.2 Experimental results

The DC-motor current control system is constructed to

validate the performance of control scheme. The desired

trajectory is given as

rðk þ 1Þ ¼ Ir sin xrp
k

kM

� �

; ð84Þ

where kM ¼ 2000 as the maximum time index, Ir ¼
15½mA�; xr ¼ 8 when 0\k� kM

2
and Ir ¼ 30½mA�; xr ¼ 4

when kM
2
\k� kM . The designed parameter d is selected as

d ¼ 0:75 to follow (45). The learning rate of MiFRENc is

designed by (47) as

0\gc �
1

d2N2
c

¼ 1

0:75292
¼ 0:0219: ð85Þ

Thus, we select the learning rate for MiFRENc as

gc ¼ 0:02.

Remark The learning rate gc is selected as the same as

simulation case because this learning rate is related only

the network architecture of MiFRENc which is same as the

previous case.

Regarding to the result in (4), let us chose the bound-

aries gm and gM as 10 and 20, respectively. According to

(46), the learning rate of FRENa is designed as

0\ga �
gm

N2
ag

2
M

¼ 10

72202
¼ 0:00051: ð86Þ

Thus, we desire to select the learning rate for FRENa as

ga ¼ 0:00025. It is around half of computation result

obtained by (86).
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Fig. 7 MiFRENc membership functions: simulation case

Table 1 Initial setting bhð1Þ: simulation case

FRENa MiFRENc

Parameter Value Parameter Value

bNLð1Þ - 0.5 bL1ð1Þ 1

bNMð1Þ - 0.25 bL2ð1Þ 0.7

bNSð1Þ - 0.15 bL3ð1Þ 0.6

bZð1Þ 0 bS1ð1Þ 0.5

bPSð1Þ 0.15 bS2ð1Þ 0.4

bPMð1Þ 0.25 bS3ð1Þ 0.3

bPLð1Þ 0.5 bZ1ð1Þ 0.2

bZ2ð1Þ 0.1

bZ3ð1Þ 0.1
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Remark In this experimental system case, the constants gm
and gM are selected as 10 times because the relation

between output (yðkÞ : 
 50 [mA]) and input (uðkÞ : 
 5

[V]) with value ranges is around 10 times without unit.

The membership settings of FRENa and MiFRENc for

this experimental system are illustrated in Figs. 11 and 12,

respectively when the proper ranges are given in

½� 50; 50�mA, [0, 10]mA2 and [0, 10]V2 for e(k), e2ðkÞ
and u2ðkÞ, respectively. The initial setting of adjustable pa-

rameters bhð1Þ for FRENa and MiFRENc is given as

Table 2.

The tracking performance is represented in Fig. 13 for

both the motor current y(k) and the tracking error e(k). The

maximum absolute value of tracking error is jeðkÞjmax ¼
78:1642 [mA] and the average absolute value of tracking

error at steady state is 0.4817 [mA] when

k ¼ 1500 � 2000. Furthermore, the control effort u(k) and

the estimated cost function L̂ðkÞ are depicted in Figs. 14

and 15, respectively. In Fig. 13, the large variation of the

tracking error is observed. It is caused by the instant back-

EMF of the motor. For the compensate of this issue, the

controller produces a large variation of the control effort as

depicted in Fig. 14. Thus, this phenomenon leads to a

second peak of L̂ðkÞ in Fig. 15. The phase plan between

u(k) and e(k) is depicted in Fig. 16 to represent the char-

acter of a large variation with a clear point of view.

Moreover, when the desired trajectory r(k) is changed, the

controller provides a higher amplitude of the armature

voltage depicted in Fig. 14 that leads to increasing of the

cost function (17). Thus, in Fig. 15, the second ripple is

detected because of the increasing of the control energy.

To demonstrate the advantage of the proposed RL

learning algorithm, the second run is tested when the initial

parameters of MiFRENc and FRENa are selected as the

final parameters obtained by the first run. For the second

run, the large variation is compensated as the results

depicted in Fig. 17. The maximum absolute value of

tracking error is jeðkÞjmax ¼ 7:391 [mA] and the average

absolute value of tracking error at steady state is 0.2197

[mA] when k = 1500–2000. Furthermore, the plot in

Fig. 18 indicates the effectiveness of the proposed con-

troller to compensate the large variation occurred in this

plant.

6 Conclusions

An adaptive controller for a class of nonlinear discrete-time

systems has been proposed by action-critic networks

(FRENa and MiFRENc). Practically, the controller has

only required the parameter gM , which has been directly

estimated by experimental data, when the mathematical

model of controlled plants has been completely omitted.
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Two sets of IF–THEN rules have been created according to

the human knowledge of controlled plant and the opti-

mization manner of tracking error and control energy for

FRENa and MiFRENc, respectively. The online learning

algorithm of two networks has been developed to tune all

adjustable parameters by RL manner. The theoretical

analysis has been conducted by the Lyapunov method to

guarantee the convergence of tracking error and internal

signals. The numerical system based on computer simula-

tion has demonstrated the effectiveness of the proposed

controller and the convergence of error signal. The

experimental system with DC-motor current control has

been established by our prototyping product. The controller

design has been conducted by using only the V–I charac-

teristic curve obtained by the standard testing process. The

results have represented the satisfied performance of con-

trol scheme such that a superior tracking performance and a

compensation of large variation occurred by unknown

nonlinear terms of controlled plant.
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Table 2 Initial setting bhð1Þ: experimental system case

FRENa MiFRENc

Parameter Value Parameter Value

bNLð1Þ - 3.5 bL1ð1Þ 1

bNMð1Þ - 2.25 bL2ð1Þ 0.7

bNSð1Þ - 1.15 bL3ð1Þ 0.6

bZð1Þ 0 bS1ð1Þ 0.5

bPSð1Þ 1.15 bS2ð1Þ 0.4

bPMð1Þ 2.25 bS3ð1Þ 0.3

bPLð1Þ 3.5 bZ1ð1Þ 0.2

bZ2ð1Þ 0.2

bZ3ð1Þ 0.1
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Unlike other RL controllers, in this work, the critic

network has been designed directly by using the set of IF–

THEN rules from the human knowledge of the controlled

plant. To emphasize this advantage, the research based on

nonholonomic systems with this proposed scheme is our

future investigating theme.
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